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A "Gel" Model for Coal 1 

R. A. M a c D o n a l d  2 and R. D.  Mountain 2 

Coal is a sedimentary, organic "rock" which is almost never in a state of ther- 
mal equilibrium. Because of its importance, the thermal properties of this ill- 
characterized substance are of great interest. Recent work has shown that coal 
has many of the characteristics of a gel-type structure. We have made this obser- 
vation the basis for a model study of the thermal properties of a gel system, 
using the equation-of-motion method to determine the density of states for the 
system and, thereby, its heat capacity. This model has one of the essential 
features of a model of coal, namely, a porous structure. With a hexagonal close- 
packed lattice as the basis for our gel, we have calculated the frequency spec- 
trum for several particle densities. The disorder in the system has a marked 
effect on the frequency spectrum, shifting a larger number of modes from high to 
low frequencies. Also, for a gel with 3 % vacancies, and in-plane, out-of-plane 
bond strengths at the ratio 2: l, there is a further shift to lower frequencies and 
the two-peaked spectrum expected for such an anisotropic structure develops. 
The heat capacity is affected only at low temperatures. We conclude that the gel 
model provides a satisfactory basis for development as a model of coal. 
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1. I N T R O D U C T I O N  

T h e  t h e r m a l  p r o p e r t i e s  of  coa l  a re  of  c o n s i d e r a b l e  c u r r e n t  i n t e r e s t  as  t he  

eff ic ient  use  of  a l t e r n a t i v e  fuel  f e e d s t o c k s  b e c o m e s  a m a t t e r  o f  s o m e  i m p o r -  

t ance .  T h e  s t r u c t u r e  of  coa l  is p o o r l y  de f i ned  b u t  r e c e n t  w o r k  h a s  s h o w n  

t h a t  m a n y  c h a r a c t e r i s t i c s  of  coa l  a re  c o n s i s t e n t  w i t h  a ge l - type  s t r u c t u r e  

1 Paper presented at the Ninth Symposium on Thermophysical Properties, June 24-27, 1985, 
Boulder, Colorado, U.S.A. 

2 Thermophysics Division, National Bureau of Standards, Gaithersburg, Maryland 20899, 
U.S.A. 
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[1].  This observation has led us to set up such a structure as the 
framework for a model to study the thermal properties of coal. This model, 
which is described in Section 2.1, has one of the essential features of coal, 
namely, a porous structure. 

In our present studies, we have two objectives in mind: (i) to develop 
a versatile, microscopic model to represent coal and (ii) to test the 
equation-of-motion method as a means of calculating the frequency spec- 
trum of the model system. 

In this paper, we present the preliminary results we have obtained. 
These pertain to three different densities (defined by the number of vacan- 
cies in the system, volume V) and, in the lowest-density case, to different 
interplanar bond strengths. We have calculated the frequency spectrum, 
energy density, and specific heat in each case. 

2. THEORY 

2.1. Model 

The foundation of our model is a planar triangular array of points. A 
network of bonds is imposed on this array by a "gelation" procedure [2],  
thus forming an aggregate structure characterized by the number of bonds 
inserted and the number of atoms missing. We have constructed a 
hexagonal close-packed structure by repeating this x - y  plane in the z direc- 
tion. This procedure has the advantage of ensuring the existence of 
pathways through the system, a feature that is likely to occur in materials 
such as coal. To increase further the flexibility of the model, we have 
assigned variable bond strengths to various local configurations of atoms 
according to the number of bonds filled at any point. We hope, in this way, 
to mimic the variety of molecular environments in coal. The size of the 
system currently under investigation is 10 x 20 x 6, permitting a maximum 
of 1200 atoms. Periodic boundary conditions are imposed on this system to 
minimize the size effects of a finite system. 

2.2. Equation-of-Motion Method 

The equation-of-motion method has proved to be a useful way of 
obtaining the density of states for disordered solids such as amorphous 
silicon and similar elemental semiconductors [3].  This method utilizes the 
fact that, for forces of limited range, most elements of the dynamical matrix 
are zero, and therefore one can solve the equations of motion without 
recourse to direct numerical diagonalization of the (3N x 3N) matrix of an 
N-particle system. The method has been described in detail by von 
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Heimendahl [4] and co-workers and by Beeman and Alben [3]. Here, we 
give a brief outline of the method, with details appropriate for our model. 

We assume that the atoms interact with nearest-neighbor harmonic 
forces and express the potential energy of the system as 

l 12 

v=~ ~ y~ kij[(u,-uj).Pii] 2 (1) 
t - - l j = l  

where the summations are over all atoms i in the system and over the 12 
nearest neighbors j of each atom in the hcp structure, k(j is the force con- 
stant for the bond i j ,  uf is the displacement of atom i from equilibrium, 
and P~j is the unit vector along bond i-j .  The equation of motion for the 
displacement of atom i, u~, is then given by 

d 2 u i ~  _ _  

/ = o / ~ - 1  

where mr is the mass of atom i and V~.jp is the second derivative of the 
potential with respect to the displacements ui~, U/e, i.e., 

~ (3) 

/ -  1 

Note that the Ve=,j~ are time independent, therefore they need be calculated 
only at the outset. From Eqs. (1) and (2), we obtain the components of the 
force on atom i, 

12 

Fix = ~ k i j [ ( U j x - U z x ) r ~ + ( U , x - u ~ v ) r j ~ r j y + ( U j z - U i ~ ) r j x ( i ~ ]  (4) 
i =  1 

and similarly for the y and z components. 
The equations of motion are integrated according to the following 

scheme, which utilizes the predictor equation of Beeman [5]. 

(i) The forces are calculated from Eq. (4); and 

(ii) at time t, the displacements u M )  , the velocities v~(t), and the 
accelerations a~(t) are given by 

&2 
ui~(t) = ui~(t - cSt) + v ~ ( t  - 6 t )  a t  + ~ -  [4F,.~(t - & )  - ai~(t - at)] 

v ~ ( t )  = v ~ ( t -  at) + ~ I-5F~(t - & )  - a ,~( t  - 6 t ) ]  (5) 
o 

a ~ ( t )  = F,~(t  -- & )  
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With these new displacements, the forces are calculated from Eq. (4) and 
new velocities are calculated according to the relation 

1 
v,~(t + g)t) = v,~(t) + -z F,~(t) 6t 

3 
(6) 

This procedure is repeated to the desired time limit Y. The time correlation 
function, 

N 3 

G(t) = y '  ~ u,~(O) ui=(t) (7) 
i = l  ~ = 1  

is calculated at each step. We also monitor the kinetic energy, 

3 

1 ~ ~ v,~(t) 2 (8) Ek( t ) = -~ . 
t = l a = l  

and the potential energy [Eq. (1)]. 
The initial conditions for this scheme are as follows: 

v,~(0)=0 

ai~(0) = 0 (9) 

ui~(O) = 2 cos q~i~ 

where the ~o;~ are random angles uniformly distributed over one cycle. With 
this prescription [3], the frequency distribution f(co) is given by 

2 
f v ~ G( t ) cos(cot) exp(-22t)  dt (10) rico) = 7  

where 2 is a spreading factor. Using the suggestions of Beeman and Alben 
as a guide, we have taken the time step 6t to be 1/20 of ~, the shortest 
period in the system, and we have set 2 = 9/3] -2. Satisfactory statistics were 
obtained with the following values: 

k 
& = 0.04, - -=10 ,  and ~- = 600 6t (11) 

m 

The units of 6t and k / m a r e  such that the maximum~equency of the hcp 
lattice is given by 

2~ ~ k / ~  
~L = - - - =  (12) 

z 10& 
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For  statistical purposes,  the corre la t ion function G(t) in Eq. (10) must  be 
averaged over  a n u m b e r  of  different initial configurations.  We found that  
50 configurat ions were sufficient to give stable results. 

2.3. Specific Heat  

Once we have the frequency distr ibution for the system, we can 
calculate the internal energy and the specific heat  f rom the wel l -known 
relations [6 ]  

E=3N foL hco f(co) do) 
F (--~ --- i-) (13) 

where 

3NkB Fo) fl2e-fl f(co) Cv =---F- joL de) 

iT--i? (14) 

F= ;oLf(co) dco (15) 

We use the notat ion,  fl = (hco/kB T), where kB is the Bol tzmann  constant  
and T is the t empera tu re  in kelvin. The  frequency scale is set by Eq. (12) 
and the relat ion 

col = 250 bco (16) 

.j --~. 

o ~  ~ , -__,~.. - -  
0,0 i0.0 20.0 30.0 40.0 50.0 

co 

Fig. 1. Frequency spectrum for aggregates of different density, hcp lattice 
(1200 particles), ; 1188 particles, .-.-; 1164 particles, - -  ; 1164 particles 
with half-strength bonds in the z direction, - . - .  
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3. RESULTS 

First, we calculated the frequency distribution, the internal energy, and 
the heat capacity of the perfect hcp lattice, i.e., c/a = 1.63, all 1200 atoms 
were present, and all bonds were of equal strength. The results provide a 
reference for the subsequent calculations and a check on our procedures. 
The results for f(co) and C(T) are shown in Figs. 1 and 2 and are typical of 
a monatomic lattice. Next, we selected an aggregate with 1164 atoms 
present (3 % vacancies) and repeated the calculation. As can be seen from 
Fig. 1, the frequency distribution is drastically altered by the disorder in the 
system, but since the change is most pronounced at very low frequencies, 
the qualitative behavior of the specific heat is unaltered. Since this system 
has a rather large concentration of vacancies, we repeated the calculation 
for another aggregate having 1% vacancies (1188 atoms), with similar 
results. Finally, to reflect better the type of bonding that is thought to be 
present in coal, we have also considered the case where the bonds in the z 
direction are weaker than those in the x-y plane. A two-peaked structure is 
apparent in the frequency spectrum, as we would expect in such an 
anisotropic situation, the low-frequency peak being associated with 
vibrations in the z direction. 

J 

O. 0 100,0 200.0 30~0.0 ~0~0.0 50~0.0 
TEMPERRTURE,K 

Fig. 2. Variation of heat capacity, C(T), with density of aggregate, hcp lattice 
(1200 particles), - - ;  1188 particles, .-. ' ;  1164 particles, - - ;  1164 particles 
with half-strength bonds in the z direction, - . - .  
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4. D I S C U S S I O N  

We have tested the equation-of-motion method and find that it is a 
satisfactory way to determine the frequency spectrum of a disordered solid. 
The low-frequency peak that occurs in the frequency spectrum of the dis- 
ordered lattices may be evidence of relaxation in the aggregate structure 
[7].  We do not claim that the results presented here, for what is still a 
comparatively simple and well-ordered structure, are representative of coal, 
however, they do provide a basis upon which to build a more realistic 
theory. As it stands, the model has the capability for considerable variation 
in the structural units that comprise the system via the variable bond 
strengths. It also provides a framework for the study of diffusion in porous 
media, through the pathways that exist in the structure. Both of these 
features must be incorporated into any description of coal. Further 
elaboration of the model might include foreign atoms trapped at sites with 
unfilled bonds or molecules at each site instead of neutral atoms, to name 
just two of the developments that we envisage. To be fruitful, development 
of the model must be guided by a close collaboration with experimental 
investigations of coal structure. We look forward to tackling some of these 
problems in the future. 
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